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Abstract-Free oscillations of bubbles in high-polymer solutions with viscoelastic properties are under 
investigation. Within the framework of the non-isothermal hereditary model of a liquid phase, an equation 
for the natural frequency of inclusion was derived, taking into account the effects of the interphase heat 
and mass transfer, diffusion and temperature non-equilibrium state of the vapour-gas mixture and of the 
liquid compressibility. A numerical analysis of the damping of free pulsations in a wide temperature range 

was conducted ; the effect and specific features of the rheological factor were investigated. 

INTRODUCTION 

ONE OF the central problems in the dynamics of 
vapour- and gas-liquid systems is that of studying 
thermal, mass and dynamic interactions between 
bubbles and fluid. Investigation of such interactions 

under various conditions goes back to Rayleigh who 
considered the collapse of a spherical cavity in an 
ideal incompressible fluid. Subsequently, the Rayleigh 

model of an empty cavity was made more soph- 
isticated due to the involvement of viscosity effects 
within the scope of the Newton carrier phase model 

solutions or melts in its general formulation. The use 

of a linear approximation allows one to obtain an 
exact solution of this problem and to make a com- 
parative evaluation of the effect of each of the factors 
considered. Using a similar approach, Part II of the 

work considers heat/mass transfer and the dynamics 

of bubbles pulsating under the action of an acoustic 
field. 

EQUATIONS OF TRANSFER IN 

THE LIQUID PHASE 

and of other factors such as gas content, fluid com- 

pressibility, heat transfer and phase transitions [I]. 
To describe the rheological behaviour of a polymer 

Far less research has been done on the problems of 
fluid, advantage will be taken of the hereditary theory 

the thermohydrodynamics of bubbles in rheologically 
[ 1 I]. We augment the governing equations [ 1 I] with 

complex media, to which polymer fluids also belong. 
the terms which take into account the Newtonian 

The first works in this field pertained to the study of 
properties of the solvent 

the specific features of cavity dynamics in various non- 
linear and viscoplastic media [24]. Later, a similar 

analysis was extended to viscoelastic fluids described 
by the Maxwell and Oldroyd equations [5-g]. In these, 
and some other works, only one of the factors that 
shows up in the dynamics of bubbles was taken into 
account. that is the non-Newtonian rheology of the 
fluid, whereas the relaxation effects, characteristic for 
polymer systems, were described within the scope of 
the models with one relaxation time. A more com- 
prehensive analysis of the problem with regard to a 
wide range of bubble sizes and different temperatures 
of a polymer carrier phase must be conducted on 
the basis of hereditary rheological models and must 
include the effects of interphase heat and mass transfer 
and of liquid compressibility [lo]. Taking into account 
what has been said above, this paper considers the 
problem of free pulsations of bubbles in high-polymer 

s r 

2=2 G,(t-r)sdz+2q,s (1) 
l% 

P2 = Pzo- 

s 

[G?(t-7)tre 
--2 

-G,(t-7)d0J&] dr-p,,v”tre (2) 

0, = Tz - T,, tre = epI 

In the case of the polymer melt it should be assumed 
that qs = ;rl” = 0. Spectral representations of the relax- 
ation functions G,(t) (i = 1,2,3) are introduced by the 
relations 

I 

II 
G, = G,,,+ E;(1)e-‘l” dE. 

0 

GZO = KT, G,, = aK, (3) 

where the distribution function F,(1) for the discrete 
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NOMENCLATURE 

‘1, thermal diffusivity -I,,> parameter of spectral distribution. 
B individual gas constant 

c concentration of polymer in solution ; Greek symbols 
coefficient in equation (25) ; specific heat 1 coefficient of thermal expansion 

n diffusion coefficient f-, ratio of heat capacities, c,,J(.,) 
e tensor of deformation rates Pip shear viscosity of solution 
E activation energy of a viscous flow 4s shear viscosity of solvent 

f natural frequency, (2~)) ’ Im {h}ta ’ f?\ volumetric viscosity of solvent 
G rK partial elasticity modulus evaporation coefficient 
k thermal conductivity coefficient ; vapour ,hz logarithmic damping constant of bubble 

concentration oscillation 

k, isothermal volumetric modulus n relaxation time 
I sound wave length in gas (vapour) IJ molar mass of gas (vapour) 
L specific heat of vaporization P density 
Lr Lewis number, Pr,lPr, d stress tensor 
M molecular mass D coefficient of surface tension 

n numbers of relaxation oscillators in 5 deviator of stress tensor. 
spectrum 

P pressure Subscripts 
Pe,, diffusion Peclet number, I vapourrgas mixture 

D ‘R,(Px,~Px) ’ 2 liquid 

PC, thermal Peclet number (i = 1, 2) g gas 

a,- ‘MP~~/Qx)’ ’ 0 equilibrium state 

Rc, universal gas constant P heat capacity at constant pressure 

R bubble radius V heat capacity in constant volume 

S tensor deviator of deformation rates V vapour. 

t time 
T temperature Superscripts 

Th boiling temperature disturbance of equilibrium 

u specific internal energy disturbance amplitude 

V velocity vector * non-dimensional quantity. 

spectrum of relaxation times is 

17 I i 

* 
G4(t-~) = Cd,,- Fe(i) em’rmr’~i dJ, ,, 

F, = 1 G,A6(i.-i.,,). (4) 
A= I 

For a viscoelastic fluid G,/, and the times AIi for 
many polymer systems can be estimated by employing 
the Rause model [ 121: 

i - 6n~2(~p-~s)G;,‘. i,,, = i,,k- ’ II - 

G,i = G,, = cR,;T/M. (5) 

In a number of cases, the relaxation spectrum is 
well described by the Spriggs empirical law [I 21: 

1,, =i,,k ‘1. z, >2. 

The mass, momentum and energy balance equa- 
tions for a hereditary medium are [ 1 l] 

dp,/dt = -pZV2v (6) 

p> dvJdt = Va (7) 

k,V%, - To dJ?t [G,(t-r)tre 

-G,(t-rr)%,/&] dz 

.I,’ 

G,, = ~20~2, G ‘. (8) 

EQUATIONS OF TRANSFER IN 

THE VAPOUR-GAS PHASE 

Henceforth, we shall assume that a vapour-gas 
bubble undergoes spherically symmetric oscillations 
around the equilibrium radius R,, with both binary 
mixture components contained in it obeying the equa- 

tions of state of an ideal gas : 

~lns = p,,,,B,,T,. urn = (,,,,,T,, B, = R,;/P,,, 

P, = p,BT,, B = kB, + (I -k)B,. 

pi = ple+p,,, m = v,g. (9 

As the bubble oscillates, the concentrations of 
vapour and gas change along the radius and in time 
according to the equations of mass transfer. Intro- 
ducing the mean mass velocity u, and the diffusion 
velocities W, and M’~ according to the relations 
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v, =kv,\+(l-k)Ulg, w, =v,m-v, (10) 

and writing the mass balance equations for each of 
the components in the spherical coordinate system 
with the axis r connected with the bubble centre 

aPh 
i)t +r-‘$qmr’(c, +w,,)) = 0. (11) 

The diffusion velocities are defined by the Fick law : 

plews = p, D akjar, pIvwv = -p,D rik/dr. (12) 

To close the system of balance equations, it is 

necessary to add momentum and energy equations. 
For wide ranges of sizes of bubbles and, consequently, 
of oscillation frequencies, the relationship I,, >> R, is 
valid and allows an assumption of uniform pressure 
in the bubble. Taking this into account, the energy 
equation will be stated as 

+p,D”ik G-U,) 
dr ~ (13) dr . 

In this approximation, the momentum equation 
drops out, whereas the rate of pressure variation 
p, = p,(t) can be obtained with the aid of the energy 

integral [ I]: 

R 

-p,R'o,(R,t)+ s 1 Gr2 dr 
II 

x [R’/3- l@r2 dr]-’ (14) 

@ = BIc,p, 

G = c;; (Bv-B,)c,,T,r-2~ ir (Dr*p, Zk/dr) 

CIP = kc,,+(l -k)cp,, cI~ = kc,++(l -k)c,. 

BOUNDARY CONDITIONS 

In the centre of the cavity (r = 0) the boundary 
conditions are 

2’ In, = 0, ST,/& = 8klFr = 0. (15) 

Let ,j denote the rate of phase transitions per unit 

surface of the bubble. Then, the kinematic condition 
for the liquid, vapour and gas, the condition for heat 
fluxes and the equation of kinetics of non-equilibrium 
phase transitions, with the temperature jump at the 
phase interphase taken into account, are formulated 
as [I] : 

d-v, = p;‘.j, R-v, -w,, = p,‘j, ~1, +wg = R 

(16) 

k,aT,/ar-k, aTJar = jL (17) 

j= rc(2nB,)-“2[~,T2T;“2-p,~TT;“2] (18) 

T2-T, = 0.32jTs(p,,(B,T,)~“2)~‘. (19) 

Here T, = T,@,,) is the saturation temperature, with 
the following relation being valid along the saturation 

line : 

(dp,,ldT,)s = Lp,vTi ‘/(I -PI~/PZ). (20) 

The system of boundary conditions is closed by 
means of the dynamic condition which determines the 

balance of forces on the bubble surface : 

p, =p2+20Rm’-z,,. (21) 

All the quantities in equations (16)-(21) are cal- 

culated at r = R(t). 

GENERAL SOLUTIONS 

Within the framework of the earlier formulated 
complete system of equations, free oscillations of 
bubbles of variable mass in a polymer solution will be 

investigated under the assumption that only a low 
molecular dissolver undergoes phase transitions. The 

pressure p2, density p? and the temperature T, in 
the fluid surrounding the oscillating bubble will be 

determined from the relations 

pzo = P>+P;, ~2 = PZO+P;> Tz = To+& 

(22) 

where p;, p; and tY2 stand for the small disturbances 
of equilibrium parameters. We linearize the equations 
of transfer in the liquid phase (6)-(8) taking into 
account the spherical symmetry of the flow and non- 

dimensionalize them together with rheological 
relations (1) and (2) using pzo, p2,,, To and R. as 

characteristic parameters. The solution of the result- 
ing system of equations is sought in a complex form. 
Let h = Re {h} +iIm {h} be the non-dimensional 

complex frequency of bubble oscillations and 6 be the 
complex amplitude. We represent the unknown small 
disturbances of the quantities as 

= jz’2,p12,P2, 0;, S} exp (hr), (23) 

a: = v;ivo, PT = PzIP20, p: = P’zlP’20, 

0: = O;/T,, AR* = (R-RJR,,, 7 = t/to, 

I/2 
to = Ro(P~,/P,o) > z.lo = R,Jt,. 

After the substitution of equations (23) into the 
corresponding equations, we find the expressions for 
the complex amplitudes of disturbances : 

82 = 272, +fi,,, 01 = s;, +o”,,, p2 =p2, +p2*, 
(24) 

d,, = -[m2(1 +m,t)A, e-“‘A5, 

o;, = -G,,(@zG3J’(h2G,h’ -&)A, e-“Q5, 



1080 2. P. SHULMAN and S. P. LEVITSKIY 

Solution (24) is governed by the superposition of 

the coupled spherical, thermal and sonic waves going 
off from the oscillating non-isothermal surface of the 
bubble into the liquid phase. The wave numbers of 
the sonic and thermal modes, ~1, and rylZ respectively, 
are the roots of the dispersion equation 

run-hnz’+c = 0 (25) 

LI = G 5,X . 

s I 

c^,,, = i*F,*(l+i*h)) di*, k = 1,2,3.4 
0 

EL* = A/t,,, V\* = 8viT0. 

The constants A, and A 2 are to be determined from 
the boundary conditions. 

The solution of the internal problem taking account 

of the temperature and diffusion non-equilibrium 
state of the vapourgas phase can be obtained by the 

method of ref. [13]. The equation of transfer in the 
binary mixture and the boundary conditions are linear- 
ized and non-dimensionalized with the use of the 
same characteristic parameters. The resulting linear 
system of equations is solved by a substitution similar 

to equation (23). whereupon the solution, together 
with equation (24). is introduced into the boundary 
conditions. As a result, the following equation is 
obtained for the complex frequency of the natural 

oscillations of a bubble : 

;+3x,[l +r,(a,-l)]+n,‘yl(sc,-Q,,,)i 

~13a*-4h(~,,,+rls*)--?‘(Q,-Q,,Qxl 

-~T,,(3r,:;+/7;~ “PQ,h, 

x [l +h(njp:o) ‘(r?7~-fn,)(x4+nhQc)Q~l = 0. 

(26) 

The expressions for the quantities c(,-zq, Q,--Q, ,, 
I? ,-IZ,, and V are presented in the Appendix. The press- 
ure pTo satisfies the equilibrium condition 

/JT,, = 1 +2a*. P:,, = ~,,,Ipv. CT* = ~l@x,Ro). 
(27) 

Equation (26) is very general and, in the approxi- 
mation of pressure homogeneity, takes into account 
all the basic physical factors for free pulsations of 
bubbles of variable mass in a relaxing non-isothermal 
hereditary medium. Since the value of the equilibrium 

vapour concentration in the bubble, k,,, was con- 
sidered arbitrary in the derivation of equation (26) 
this equation can be used for a wide temperature 
range. With the given temperature of the system T,, 
the equation for k,, follows from equilibrium con- 

dition (27). with equation (9) taken into account : 

k, = il+B,B, ‘[(1+2rr*),;p,*,-11; ‘, 

P?” = P,“lPN. (28) 

In the case of an incompressible non-Newtonian 
fluid (KT = co, x = 0, 6,,8 = cz,> = 6,,, = Cl,, = u> 

= 0). equation (26) coincides with the charac- 
teristic equation of ref. [13] except for the time scale 
I,,. When k, = 0 and ti = 0, equation (26) describes 
the pulsations of a purely gas bubble. It should be 
noted that. as follows from equation (28) the con- 
dition k o z 0 corresponds to the case p$, CC 1, i.e. to 
low enough temperatures. For this case equation (26) 
can yield, under certain assumptions. the equation 
of ref. [14] (the fluid is incompressible and is con- 
sidered as a thermostat (zz --t 7~) the relaxation 

spectrum F,(1) is discrete, heat losses in bubble oscil- 
lations are absent (zl + r_ or r3 + 0) and the press- 
ure in the gas phase follows the polytropic law). 
The equation of free oscillations of a gas bubble in 
the Oldroyd fluid [I51 can also be considered as a 
particular case of equation (26) at k,, = IC = 0, z2 = ‘-L 
and G,,, = 0. 

NUMERICAL RESULTS AND DISCUSSION 

Equation (26) involves a large number of various 

physical parameters that characterize the thermo- 
physical and rheological properties of the liquid 
phase and also the vapour-gas mixture in a bubble. 

When selecting the values for these parameters it 
should be taken into account that the greatest interest. 
from the viewpoint of the joint analysis of heat and 
mass transfer and rheology effects in the dynamics of 
bubbles of variable mass, attaches to polymer solu- 
tions with highly volatile organic solvents (benzene, 

toluene, cyclohexane, etc.) which are widely employed 
in chemical technology. In contrast to polymer thuds, 
the thermophysical properties of these solutions have 
been well studied. This is important since the prop- 
crties of the solutions of low and moderate con- 

centrations arc usually close to those of the pertinent 
solvents. For this reason, WC shall first analyse the 
dynamics of vapour-air bubbles in a pure solvent with 
a low specific heat of evaporation using toluene as an 
example (T,, = 383.7 K). The thermophysical param- 
eters of toluene, its vapours and air were deter- 
mined with the aid of tabular data and empirical 
relations within the temperature range (293 K, rr,). 
Consideration was also given to the variants cor- 
responding to the quasi-equilibrium scheme of phase 
transitions (K = ‘CC) which has gained great currency 
in theoretical calculations [I]. The numerical results 
presented in the plots take into account the r&lions 
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k, = k&R,) originating under the action of surface 

tension at pvo = const. in accordance with equation 

(28). The corresponding curves with k, # const. 
are isotherms (IT). Also considered were isocon- 

centration curves (ICC) along which k, = const. 
and, consequently, the variables were the saturated 
vapour pressure and the liquid temperature. Curve 7 
in Fig. 1 is presented to illustrate the effect of the 
temperature dependence of thermophysical param- 
eters on the quantity A ; it corresponds to To = T,, 
(IT, K = co), but does not take into account the vari- 

ation of the liquid and vapour constants within the 

range (293 K, T,,). 
It is evident from the plots in Fig. 1 that the damp- 

ing ratio of the pulsations of bubbles increases with 
temperature due to the greater effect of phase tran- 

sitions. Calculations show that there occurs a simul- 
taneous decrease in the natural frequency f: The 

difference between the isotherms and isoconcentration 
curves increases with the growth of To and becomes 

especially significant at To = Tb in the case of quasi- 
equilibrium character of phase transitions (curves 4” 
and 4”‘). Especially noteworthy is the qualitatively 

different character of the behaviour of these curves in 
the region R. < 10e4 m. This result emphasizes the 
importance of the inclusion of capillary effects in cal- 
culations of natural pulsations of fine vapour-gas 
inclusions for temperatures close to T,,. It should be 

noted, however, that in the case of the non-equi- 
librium phase transition the difference between the 
isotherms and isoconcentration curves is less sig- 
nificant (curves 4 and 4’). Calculations showed that 

the effect of the phase non-equilibrium state in the 
presence of free oscillations of bubbles in toluene is 

stronger than in water. Therefore, the correct deter- 
mination of K for highly volatile fluids is still more 

important than for fluids with high heats of vapor- 

ization. 
The oscillations of bubbles in polymer solutions 

were calculated for two fluids : 1.46% polyethyl- 
eneoxide (PEO) solution in water (at T, = 293 K) 

and 2.5% polystyrene (PS) solution in toluene with 
M - 2 x 106. The values of the parameters for the first 
solution were taken from ref. [16], whereas for the 

second solution they were determined taking account 
of the available experimental data on the basis of the 

perature-frequency superposition principle [ 121 at 
1085 15 kJ mol-‘. They are presented in Tables 1 

A 

RO h-d 

FIG. 1. Damping constants of vapour-gas bubble oscillations 
in toluene. I, 2,3,3”, 4,4”, 5,8, IT ; 2’, 4’, 4”‘, 6, ICC ; 3,3”, III, 
K is equal to 0.02 and co, respectively; 4,4’, IV, K = 0.018 ; 4. 
4’. IV, K = CO ; 8, IV, K = 0.027; 6, water, T,, = 373 K, 
K = cu ; 1, 1; 2, 2’, 11; 5, I, water. Roman figures I-IV 
correspond to TC, = 293, 363, 378 and 383.7 K respectively. 

UN 2. The relaxation parts of the moduli G,,,, the 
influence of which is usually significant only for tem- 

peratures (or frequencies) close to the glass transition 
zone, were not taken into account. In calculations, 

account was taken of the fact that there was a differ- 
ence between the partial pressure of solvent vapours 
above the solution & and the pressure p& above the 
pure solvent @-$ = up&). The parameters of spectral 
distribution z,,~ (it was assumed that E.,, = A2,pm12) 
varied over the range (2,3); the activity factor a 

changed over the range (0.85,l). According to ref. 
[16], for the PEO solution qp = 6.9 Pa s and z, = 3.4. 
The values n, = n: and n, = nt correspond to the 
limiting curves on the plots, the position of which does 
not change with a further increase in n ,,* [14]. 

Free pulsations of air bubbles in polymer PEO and 
PS solutions at T, 293 K are characterized by the plots 

Table 1. Thermophysical parameters of the solution and 
solvent 

Parameter 

Pzo 
‘Is 
rl” 

: 

(‘ZP 
I-2 
k, 

; 

Dimension 

kg m-’ 
Pa s 
Pa s 
K-’ 

J kg-’ 
Jkg-‘K-l 

W mm’ Km’ 
Nm-’ 
m* s-’ 

Value 

850 
0.5 x lOmA 
5 x 10-2 

10-3 
4 x lo5 

1.7 x 10’ 
1.4 
0.125 
0.022 
10-5 
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Table 2. Rheological parameters of the solution and the pressure of saturated 
vapour 

Parameter Dimension Value 

K 
Pa s 
Pa s 

s 

id 

Pa 

in Fig. 2. They indicate that the viscoelastic properties 

of the fluid are responsible for the reduction of dis- 
sipative losses in the presence of bubble pulsations as 
compared to a similar Newtonian fluid. The growth 
of the spectral distribution parameter z, leads to the 
strengthening of relaxation effects (curves 2 and 3), 

being attributable to the broadening of the relaxation 
spectrum. Note that the values of A for the PEO 
solution are very close to the values corresponding to 

pure water. This is due to the large molecular weight, 
relaxation time and the value of the parameter z, for 
the fluid. The result agrees with the experimental data 
on the damping of free oscillations of air bubbles in 
polyox aqueous solution presented in ref. [ 171. 

The main conclusions resulting from the analysis 

of free oscillations of vapour-air inclusions are as 
follows. The effect of the relaxation properties of the 
fluid on pulsations of variable-mass bubbles, for 

which the phase change-induced dissipation is large. 
turns out to be somewhat smaller than in the case of 

gas inclusions and is important only for R, < IO ’ m 
(Fig. 3). The effects of viscoelasticity are especially 
significant for quasi-equilibrium vapour-gas bubbles 
(isotherms 1” and 2”). In this case a qualitatively 
different character of the variation of A on the 

decrease of R. is observed for a viscous fluid with 
qs = q,, and for a viscoelastic solution due to the fol- 
lowing two reasons : the reduction of dissipative losses 

in the course of the pulsations of bubbles due to visco- 

RO (m) 

FIG. 2. Damping constant of free oscillations of bubbles 
in a polymer solution at T,, = 293 K. I, z, = 2. n, = I : 2. 
=i = 2.5. n, = nr: 3, :, = 2, n, = ny; 4, 5, viscous fluid with 
q = 0.5. 6.9 Pa s; I-3, polystyrene solution in toluene; 6. 

I .46% polyethvleneoxide solution in water. 

293 378 3x3.7 
0.5 0.125 0.1 I7 
I 0.25 0.23 

10~’ 2x10 ’ 1.5x IO_’ 
2x10 2 4x10 i 3x10~ 1 

0.287 x IO- ’ 0.85 x IO’ 

1.15x IOV 0.63 x IO 

0.61: 5 

IO’ 

elasticity and the growth of the role of this factor along 

isotherm 2” against the background of the reduction in 
heat dissipation due to a decrease in vapour con- 
centration in the bubbles. 

When the viscoelasticity of the fluid is taken into 

account, the natural frequency of small vapour-gas 
bubbles increases. but in the given polymer solution 
this effect turns out to be less significant than, for 
example, in the systems considered in ref. [14]. This 
result is explained by the difference in molecular 
weights of the polymers: the variants presented in 
Table 2 correspond to values of M which are almost 
an order of magnitude higher than those adopted in 

ref. [ 141. Calculations showed that with the growth of 

A 

16 

12 

0h 

4 

D 

102 
1 o-2 103 104 10-E 

R. (m) 

FIG. 3. Damping constant and natural frequency of vapour 
and vapour-gas bubble in a polymer solution at To = 383.7 
K. u = 1 : I. I”. 2. 2”. 3. ICC: I’. I”‘. 2. 2. IT: 2. 2’. 2”. 2”‘. 
3.,~,~~~:I.l’.l”.I”‘.~,=~,=0.i17Pas;l,I’.~=O.02; 
I”. I “‘, h’ = cc, ; 2, 7, K = 0.02, z, = 2 : 2”, 2”‘, h’ = 30, 

- = 2.5. I 
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the activity coefficient a the value of A decreases due 
to the reduction of heat dissipation caused by the 

decrease of vapour content in the bubbles. 
It should be noted in conclusion that since a new 

equilibrium state is impossible for purely vapour 
bubbles after the change in pressure, equation (26) at 
k, = 1 also has a positive real root in addition in the 
complex root. Due to the effect of capillary press- 
ure, a similar situation is also possible for small 
enough vapour-gas inclusions with 1 > k, > k, where 
k, = cp(l +q) -‘, q = B,B;‘[2+3/2a*] [18]. In this 
case the damping radius fluctuations determined by 

the complex root of equation (26) are accompanied 
by an exponential growth or collapse of a bubble. It 
is important, however, that if the equilibrium vapour 
content k, at I”,, = T,, is determined from formula 
(28), which takes into account the existing relation 
k, = k,(R,), then we shall have k, < k, at all R, 
values. This means that the existence of bubbles with 

the critical vapour concentration k, requires the 
superheating of fluid, whereas the isotherms presented 

in the plots for T,, = Th always correspond to steady 
free oscillations of inclusions. 

CONCLUSIONS 16. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Numerical analysis of the characteristic equa 
for the complex natural frequency of a vapour 

1085 

bubble in a polymer solution showed that in contrast 
to the heat and mass transfer processes the relaxation 

18. 

properties of the carrier phase are responsible for the 
reduction of losses in pulsation as compared to a 
similar viscous fluid. The effect increases with a 

decrease in the bubble radius, increase in the relax- 

ation time and with broadening of the relaxation 
spectrum. For polymer solutions with a high molec- 
ular weight this can lead, according to experimental 
data, to a decrease in the damping constant down to 

values close to those corresponding to a pure solvent. 
The effect of the viscoelastic properties of the fluid on 
damping of oscillations of variable-mass bubbles, for 
which the phase change-induced dissipation is large, 
is expressed to a lesser extent than in the case of 
gas bubbles. The natural frequency of bubbles in a 
relaxing medium is higher than in a similar viscous 
fluid. 
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TRANSFERT THERMIQUE/MASSIQUE ET DYNAMIQUE DES BULLES DANS DES 
SOLUTIONS DE HAUTS POLYMERES-I. OSCILLATIONS LIBRES 

R&urn&On etudie les oscillations libres de bulles dans des solutions d’un haut polymtre a propriete 
viscoelastique. Dans le cadre d’un modele hereditaire non isotherme d’une phase liquide, une iquation 

pour la frtquence naturelle d’inclusion est obtenue, prenant en compte les effets du transfert de chaleur et 

de masse entre phases, du non tquilibre de diffusion et de temptrature du mklange vapeurvgaz et de la 

compressibilitk du liquide. Une analyse numerique de l’amortissement des pulsations libres est conduite 
dans un large domaine de temperature; on etudie les configurations specifiques et I’effet du facteur 

rheologique. 

WARME- UND STOFFUBERTRAGUNG UND BLASENDYNAMIK IN 
HOCHPOLYMEREN LOSUNGEN-I. FREIE OSZILLATIONEN 

Zusammenfassung-Freie Oszillationen von Blasen in hochpolymeren Liisungen mit viskoelastischen 
Eigenschaften werden untersucht. Im Rahmen des nichtisothermen “Vererbungsmodells” einer Fhis- 
sigphase wird eine Gleichung fiir die natiirliche Frequenz entwickelt. Dabei werden folgende Einfliisse 
beriicksichtigt : Warme- und Stoffiibertragung iiber die Phasengranze, Nichtgleichgewichtszustand des 
Dampf-Gasgemisches im Hinblick auf Diffusion und Temperatur sowie Kompressibilitlt der Fhissigkeit. 
Die Dampfung der freien Schwingungen wird in einem weiten Temperaturbereich numerisch analysiert. 

Die Auswirkung und die spezifischen Merkmale des reologischen Faktors werden ebenfalls untersucht. 

TI-IJIOMACCOOBMEH H flHHAMMKA HY3bIPbKOB B PACTBOPAX 
BbICOKOIIOJIMMEPOB-I. CBO6OJIHbIE KOJIEBAHHEI 

~OTaUW-k’kCJIeAytTC,l CBO6OAHbIe KoneGaHarr ny3bIpbKOB B paCTBOpe BbICOKOnOJIliMepa C ynpyro- 

BaII3KHMU CBOiiCTBaMH. B paMKaX HeIi30TepMHWCKO~ HaCJIeACTBeHHOii MOAeJIA XCllfiKOti $a3bI l’IOJIy’ieH0 

ypaBHeHHe A,,% CO6CTBeHHOti ‘,aCTOTbI BKJIlOYeHBR, yWTbIBa#Omee 3+$?KTbI Me,K,$a3HOrO TeIUTOMaCCO- 

nepexoca, AW#~~UOHHO~ ki TehmepaTyotiofi HepaaHoBecHocTH naporasoaoii ch4ecn, CxKBMaeMocTn xcnA- 

KOCTU. npOBeAeH VHC,IeHHbIii aHaJI&i3 3aTyXaHHR CBO60AHbIX llyJIbCal& B IUHpOKOM AHaIIa3OHe 

TeMnepaTyp, a3yqeHo BnuKmie H OCO6eHHOCTH nponanemin peonornsecKor0 +aKTopa. 


